
sheetparser Documentation
Release 0.1a1

Guillaume Coffin

Sep 27, 2017

Contents

1 Contents: 3
1.1 Introduction to sheetparser . 3
1.2 Patterns . 6
1.3 Line and table transformations . 8
1.4 Results . 10
1.5 Documents and backends . 10

2 Indices and tables 11

i

ii

sheetparser Documentation, Release 0.1a1

sheetparser is a library for extracting information from Excel sheets (as well as csv and pdf) that contain complex or
variable layouts of tables.

Obtaining data from various sources can be very painful, and loading Excel sheets that were designed by humans for
humans is especially difficult. The focus of the persons who create those sheet is first to display the information in a
way that pleases their eyes or can convince others, and readability by a computer is low on the list of priorities. Also
as time goes, they add intermediate lines or columns, or add more information. The systematic loading of historical
information can then become a very heavy task.

The purpose of this package is to simplify the data extraction of those tables. Complex and flexible layouts can be
implemented in a few lines.

Contents 1

sheetparser Documentation, Release 0.1a1

2 Contents

CHAPTER 1

Contents:

Introduction to sheetparser

The purpose of this library is to simplify complex Excel sheets reading. The idea is to describe
the layout of the sheet with spatial patterns, allowing for changes in actual position of the elements.

Fig. 1.1: sheet 1: Example of tables inside a sheett

For instance, let’s assume that we need to extract
data from sheet 1 on the right. That sheet could be
described as:

• One table with top and left header

• Followed by and empty line

• Another table with top and left header

• An empty line

• And 2 lines

We code the pattern as follows:

from sheetparser import *

pattern = Sheet('sheet', Rows,
Table,
Empty,
Table,
Empty,
Line, Line)

This pattern will recognize all sheets with a sim-
ilar layout. The tables could be smaller or larger.
The argument Rows is for the layout of the sheet:
it would be Columns if the tables were aligned hor-
izontally.

3

sheetparser Documentation, Release 0.1a1

The pattern is used as follows:

wbk = load_workbook('test_
→˓table1.xlsx',with_formatting=False)
context = ListContext()
pattern.
→˓match_range(wbk['Sheet2'], context)
print(context.root)

We first open the workbook, and create a context.
This object will store the parsing result. There
are 2 provided context classes: PythonObjectRe-
sult will contain results in a hierarchy that repli-
cates the hierarchy of patterns, and ListResult will
return them as a list of values.

The next step is to check if the pattern matches the
sheet. It will raise a DoesntMatchException if not.
The final step to read the result from context.root.

The result is available in context. If we print it, we obtain the following value

{'table': [Table table ([['a11', 'b11', 'c11'], ['a21', 'b21', 'c21'],
['a31', 'b31', 'c31']]), Table table ([['a12', 'b12', 'c12'], ['a22',
'b22', 'c22'], ['a32', 'b32', 'c32']])], 'line': [['line1'],
['line2']], '__meta': [{'name': 'Sheet2'}]}

This represents the result of the parsing, and can be easily used in a program, for instance to load in a database.

Fig. 1.2: sheet 2: Version 2 of the sheet

Now let’ss assume that the accounting department
issues one month later an updated version of this
document (version 2), but there is now only 1 table
and 3 lines. We can add a little more flexibility in
our pattern:

pattern = Sheet('sheet', Rows,

→˓ Many(Table, Empty, min=1,max=2),
Many(Line)
)

With that pattern, we can match both sheets. Alter-
natively, we could code this:

pattern = Sheet('sheet', Rows,
Table, Empty,
Maybe(Table, Empty),
Many(Line)
)

The idea is similar to regular expressions. It pro-
vides a powerful language to accommodate differ-
ent situations, and with a flexible system to detect
sheet features such as text or formatting.

4 Chapter 1. Contents:

sheetparser Documentation, Release 0.1a1

Another example

Here’s a more complex example:

1 wbk = load_workbook(filename,
→˓ with_formatting=True)

2 sheet = wbk['Sheet6']
3 pattern = Sheet('sheet', Columns,
4 Many(Empty),
5

→˓ FlexibleRange('f1',Rows,
6

→˓ Many(Empty),
7

→˓ Table('t1',[GetValue,
→˓HeaderTableTransform(2,1),FillData,
→˓RemoveEmptyLines('columns')],

8

→˓ stop=no_horizontal),
9

→˓ Empty,
10

→˓ FlexibleRange('f2',Columns,
11

→˓ Many(Empty),Table('t2'),
12

→˓ stop=no_horizontal),
13

→˓ Many(Empty),
14

→˓ Many((Line('line2
→˓',[get_value,Match('Result:')])

15

→˓ + Line(
→˓'line3',[StripLine(),get_value]))

16

→˓ | Line('line1')),
17

→˓ stop = lambda line,linecount:
→˓linecount>2 and empty_line(line)

18),
19 Many(Empty),
20

→˓ FlexibleRange('f3',Rows,
21

→˓ Many(Empty),
22

→˓ Table('t3',stop = no_horizontal)))

Here’s how it works (the numers refer to the line
number in the code above):

PDF Files

Version 0.2 includes a PDF backend. The docu-
ment is seen as a Book and the Sheet are the pages of the document. Use the page number instead of the sheet
name.

1.1. Introduction to sheetparser 5

sheetparser Documentation, Release 0.1a1

Patterns

Some definitions

range is an Excel range, delimited with a top, a left, a right and a bottom. A sheet is an example of a
range.

line is a row or a column. This is decided by the chosen layout: horizontal layouts will yield rows,
vertical will yield columns.

pattern is an object that matches the given range or line(s). If the match fails, the method raises a
DoesntMatchException. If it succeeds, it fills up the context given as a parameter.

Note that patterns can be passed as arguments to the upper level pattern as object or classes. Classes will
be instatianted.

There are 3 types of patterns:

Workbook

This pattern will be called to match a workbook:

class sheetparser.patterns.Workbook(names_dct=None,
re_dct=None,
*args,
**op-
tions)

A top level pattern to match a workbook. Call
match_workbook on an opened workbook document (as
provided by a backend)

Parameters

• names_dct (map) – a dictionary that
associates a sheet name to the sheet pattern

6 Chapter 1. Contents:

sheetparser Documentation, Release 0.1a1

• re_dct (map) – a dictionary or a tu-
ple of pairs that associate a regular ex-
pression to the sheet pattern

match_workbook(workbook, context)
Iterates through the sheets in the workbook. If names_dct contains the sheet name, it will try and match
the associated pattern. If not, the method will try in re_dct if any of the regular expressions matches the
names. Finally, if any other pattern is provided, they will be tried in sequence.

The context will contain the matching sheet in the same order as in the workbook,

Ranges

The following patterns match either the whole sheet or a range:

class sheetparser.patterns.Sheet(name, layout, *patterns)

class sheetparser.patterns.Range(name, layout, *patterns, top=None, left=None, bottom=None,
right=None)

A range of cells delimited by top, left, bottom, right. RangePatterns are to be used directly under Workbook.

Layout is Rows or Columns, and will be used to know if the range should be read horizontally or vertically.

Iterators of lines

These patterns are called on an iterator of lines, and will be passed as parameters to Range patterns or other patterns
matching iterators of lines.

These patterns can be combined with the operator +, which returns a Sequence. a+b is equivalent to Sequence(a,b).
Similarly, a|b is equivalent to OrPattern(a,b).

The name of the pattern is used by the ResultContext to store the matched element. The existing patterns that operate
on an line iterator are:

class sheetparser.patterns.Empty(name)
Matches an empty line. Doesn’t match if there is no more lines in the line_iterator

class sheetparser.patterns.Sequence(name=’sequence’, *patterns)
matches the sub patterns in sequence. Will match all or nothing. Name is an optional parameter. If omitted, the
name will be ‘sequence’.

class sheetparser.patterns.Many(name=’many’, pattern)
Matches the subpattern several times. The number of times is limited by the parameters max and min. Name
defaults to ‘many’

class sheetparser.patterns.Maybe(name=None, pattern)
Matches the subpattern or nothing. Equivalent to ? in regexes

class sheetparser.patterns.OrPattern(pattern1, pattern2)
matches the first pattern and if it fails tries the seconds.

Parameters

• pattern1 (Pattern) – first pattern to try

• pattern2 (Pattern) – fall back patter

class sheetparser.patterns.FlexibleRange(name=’flexible’, layout, *patterns, stop=None,
min=None, max=None)

Finds a range by itering through the lines until the stop test returns true. That range is then used as a new range
with the given layout and patterns.

1.2. Patterns 7

sheetparser Documentation, Release 0.1a1

Parameters

• name (str) – pattern name

• layout (Layout) – layout used to iter the result range

• patterns (Pattern) – patterns to be used with the new layout

• stop (function(line_count,line)) – stop test, by default empty line

• min (int) – minimum length of the range

• max (int) – maximum length of the range (None for unbound)

class sheetparser.patterns.Table(name=’table’, table_args=DEFAULT_TRANSFORMS,
stop=None)

A range of cells read from a line iterator. The table transforms are read in sequence at 2 times: when new lines
are appended and when the table is complete.

Parameters

• name (str) – optional name of the table, “table” by default.

• table_args (list) – the arguments that are sent to the ResultContext that will store the
result. For ResultTable, the default, that will be the list of transforms.

• stop (function) – that function is called on the following line. The table end is reached
when that function returns True. It takes 2 parameters: the number of lines read so far and
the line itself. By default, will stop on empty lines

class sheetparser.patterns.Line(name=’line’, line_args=None)
Matches a line: there must be one more row/column in the line_iterator and it must be non empty.

Parameters line_args (list) – list of transforms to the result (strip, raise if empty...)

Stop tests

Stop tests are functions that are passed to FlexibleRange and Table to detect the end of a block. You can create your
own and pass it as a parameter to the pattern.

sheetparser.patterns.empty_line(cells, line_count)
returns true if all cells are empty

sheetparser.patterns.no_horizontal(cells, line_count)
return True is no cell has horizontal border

sheetparser.patterns.no_vertical(cells, line_count)
check that there is no vertical line in the cells

Line and table transformations

The contents that is matched by the Line and Table patterns is stored in the context result. Another level of processing
is provided by list of transformations.

Line transformations

They are passed as line_args parameters to the Line pattern. It is a list of function that take a list and return a list.
These functions are called in sequence, the result of one function is passed to the following one.

8 Chapter 1. Contents:

sheetparser Documentation, Release 0.1a1

The first function of the list must accept a list of Cell. The function get_value transforms it to the list of values.

These are the included line transformations:

sheetparser.results.non_empty(line)
A transformer that matches only non empty lines. Other will raise a DoesntMatchException

Parameterized functions (objects with a method __call__):

class sheetparser.results.StripLine(left=True, right=True)

class sheetparser.results.Match(regex, position=None, combine=None)
A transformer that matches lines that contain the given regex. Use combine to decide if all or any item should
match

Parameters

• regex (regex) – a regular expression

• position (list) – a list of positions or a slice

• combine (function) – function that decides if the whole line matches

Table transformations

Similarly, the lines matched by the Table pattern are passed to a series of processings. They are subclasses of Table-
Transform which implement wrap or process_line (or both). process_line is called when a new line is added, and wrap
is called at the end when all lines have been added.

class sheetparser.results.GetValue
Transforms a list of cells into a list of strings. All built in processors expect GetValue to be included as the first
transformation.

class sheetparser.results.FillData
Adds the line to the table data

class sheetparser.results.HeaderTableTransform(top_header=1, left_column=1)
Extract the first lines and first columns as the top and left headers

Parameters

• top_header (int) – number of lines, 1 by default

• left_column (int) – number of columns, 1 by default

sheetparser.results.RepeatExisting
alias of <lambda>

class sheetparser.results.RemoveEmptyLines(line_type=u’rows’)
Remove empyt lines or empty columns in the table. Note: could be really simplified with numpy

class sheetparser.results.ToMap
Transforms the data from a list of lists to a map. The keys are the combination of terms in the headers (top and
left) and the values are the table data

class sheetparser.results.MergeHeader(join_top=(), join_left=(), ch=u’.’)
merges several lines in the header into one

class sheetparser.results.Transpose
Transforms lines into columns and columns to lines

1.3. Line and table transformations 9

sheetparser Documentation, Release 0.1a1

Results

When a pattern is matched, it fills a ResultContext. The ResultContext has to be instantiated by the client and passed
to the match method. Here are the provided classes that derive from ResultContext:

sheetparser.results.PythonObjectContext()
Store the results are a hierarchy of objects that mimics the initial hierarchy of patterns

sheetparser.results.ListContext()
a context that returns a dictionary where the key is the name of the pattern

sheetparser.results.DebugContext()
A result context that implements the debug function

Documents and backends

We load first a backend - that’s the module that will read the Excel sheet and provide the information to the library.
There are 5 provided backends:

• one based on xlrd, that can read xls file and xlsx without

formatting,

• one based on openpyxl that can read xlsx files with some

formatting information

• one is based on win32com and the actual Excel program, with serious performance issues

• raw provides an interface for data stored as list, as well as csv files

• pdfminer provides an interface for pdf files. This feature is experimental and is limited by the amount of
information that pdf files can provide.

10 Chapter 1. Contents:

https://pypi.python.org/pypi/xlrd
https://pypi.python.org/pypi/openpyxl
https://pypi.python.org/pypi/pdfminer.six

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

sheetparser Documentation, Release 0.1a1

12 Chapter 2. Indices and tables

Index

D
DebugContext() (in module sheetparser.results), 10

E
Empty (class in sheetparser.patterns), 7
empty_line() (in module sheetparser.patterns), 8

F
FillData (class in sheetparser.results), 9
FlexibleRange (class in sheetparser.patterns), 7

G
GetValue (class in sheetparser.results), 9

H
HeaderTableTransform (class in sheetparser.results), 9

L
Line (class in sheetparser.patterns), 8
ListContext() (in module sheetparser.results), 10

M
Many (class in sheetparser.patterns), 7
Match (class in sheetparser.results), 9
match_workbook() (sheetparser.patterns.Workbook

method), 7
Maybe (class in sheetparser.patterns), 7
MergeHeader (class in sheetparser.results), 9

N
no_horizontal() (in module sheetparser.patterns), 8
no_vertical() (in module sheetparser.patterns), 8
non_empty() (in module sheetparser.results), 9

O
OrPattern (class in sheetparser.patterns), 7

P
PythonObjectContext() (in module sheetparser.results),

10

R
Range (class in sheetparser.patterns), 7
RemoveEmptyLines (class in sheetparser.results), 9
RepeatExisting (in module sheetparser.results), 9

S
Sequence (class in sheetparser.patterns), 7
Sheet (class in sheetparser.patterns), 7
StripLine (class in sheetparser.results), 9

T
Table (class in sheetparser.patterns), 8
ToMap (class in sheetparser.results), 9
Transpose (class in sheetparser.results), 9

W
Workbook (class in sheetparser.patterns), 6

13

	Contents:
	Introduction to sheetparser
	Patterns
	Line and table transformations
	Results
	Documents and backends

	Indices and tables

