
sheetparser Documentation
Release 0.1a1

Guillaume Coffin

May 27, 2021

Contents

1 Contents: 3
1.1 Introduction to sheetparser . 3
1.2 Patterns . 6
1.3 Line and table transformations . 7
1.4 Results . 8
1.5 Documents and backends . 8

2 Indices and tables 9

i

ii

sheetparser Documentation, Release 0.1a1

sheetparser is a library for extracting information from Excel sheets (as well as csv and pdf) that contain complex or
variable layouts of tables.

Obtaining data from various sources can be very painful, and loading Excel sheets that were designed by humans for
humans is especially difficult. The focus of the persons who create those sheet is first to display the information in a
way that pleases their eyes or can convince others, and readability by a computer is low on the list of priorities. Also
as time goes, they add intermediate lines or columns, or add more information. The systematic loading of historical
information can then become a very heavy task.

The purpose of this package is to simplify the data extraction of those tables. Complex and flexible layouts can be
implemented in a few lines.

Contents 1

sheetparser Documentation, Release 0.1a1

2 Contents

CHAPTER 1

Contents:

1.1 Introduction to sheetparser

The purpose of this library is to simplify complex Excel sheets reading. The idea is to describe
the layout of the sheet with spatial patterns, allowing for changes in actual position of the elements.

Fig. 1: sheet 1: Example of tables inside a sheett

For instance, let’s assume that we need to extract
data from sheet 1 on the right. That sheet could be
described as:

• One table with top and left header

• Followed by and empty line

• Another table with top and left header

• An empty line

• And 2 lines

We code the pattern as follows:

from sheetparser import *

pattern = Sheet('sheet', Rows,
Table,
Empty,
Table,
Empty,
Line, Line)

This pattern will recognize all sheets with a sim-
ilar layout. The tables could be smaller or larger.
The argument Rows is for the layout of the sheet:
it would be Columns if the tables were aligned hor-
izontally.

3

sheetparser Documentation, Release 0.1a1

The pattern is used as follows:

wbk = load_workbook('test_
→˓table1.xlsx',with_formatting=False)
context = ListContext()
pattern.
→˓match_range(wbk['Sheet2'], context)
print(context.root)

We first open the workbook, and create a context.
This object will store the parsing result. There
are 2 provided context classes: PythonObjectRe-
sult will contain results in a hierarchy that repli-
cates the hierarchy of patterns, and ListResult will
return them as a list of values.

The next step is to check if the pattern matches the
sheet. It will raise a DoesntMatchException if not.
The final step to read the result from context.root.

The result is available in context. If we print it, we obtain the following value

{'table': [Table table ([['a11', 'b11', 'c11'], ['a21', 'b21', 'c21'],
['a31', 'b31', 'c31']]), Table table ([['a12', 'b12', 'c12'], ['a22',
'b22', 'c22'], ['a32', 'b32', 'c32']])], 'line': [['line1'],
['line2']], '__meta': [{'name': 'Sheet2'}]}

This represents the result of the parsing, and can be easily used in a program, for instance to load in a database.

Fig. 2: sheet 2: Version 2 of the sheet

Now let’ss assume that the accounting department
issues one month later an updated version of this
document (version 2), but there is now only 1 table
and 3 lines. We can add a little more flexibility in
our pattern:

pattern = Sheet('sheet', Rows,

→˓ Many(Table, Empty, min=1,max=2),
Many(Line)
)

With that pattern, we can match both sheets. Alter-
natively, we could code this:

pattern = Sheet('sheet', Rows,
Table, Empty,
Maybe(Table, Empty),
Many(Line)
)

The idea is similar to regular expressions. It pro-
vides a powerful language to accommodate differ-
ent situations, and with a flexible system to detect
sheet features such as text or formatting.

4 Chapter 1. Contents:

sheetparser Documentation, Release 0.1a1

1.1.1 Another example

Here’s a more complex example:

1 wbk = load_workbook(filename,
→˓ with_formatting=True)

2 sheet = wbk['Sheet6']
3 pattern = Sheet('sheet', Columns,
4 Many(Empty),
5

→˓ FlexibleRange('f1',Rows,
6

→˓ Many(Empty),
7

→˓ Table('t1',[GetValue,
→˓HeaderTableTransform(2,1),FillData,
→˓RemoveEmptyLines('columns')],

8

→˓ stop=no_horizontal),
9

→˓ Empty,
10

→˓ FlexibleRange('f2',Columns,
11

→˓ Many(Empty),Table('t2'),
12

→˓ stop=no_horizontal),
13

→˓ Many(Empty),
14

→˓ Many((Line('line2
→˓',[get_value,Match('Result:')])

15

→˓ + Line(
→˓'line3',[StripLine(),get_value]))

16

→˓ | Line('line1')),
17

→˓ stop = lambda line,linecount:
→˓linecount>2 and empty_line(line)

18),
19 Many(Empty),
20

→˓ FlexibleRange('f3',Rows,
21

→˓ Many(Empty),
22

→˓ Table('t3',stop = no_horizontal)))

Here’s how it works (the numers refer to the line
number in the code above):

1.1.2 PDF Files

Version 0.2 includes a PDF backend. The docu-
ment is seen as a Book and the Sheet are the pages of the document. Use the page number instead of the sheet
name.

1.1. Introduction to sheetparser 5

sheetparser Documentation, Release 0.1a1

1.2 Patterns

1.2.1 Some definitions

range is an Excel range, delimited with a top, a left, a right and a
bottom. A sheet is an example of a range.

line is a row or a column. This is decided by the chosen layout: hor-
izontal layouts will yield rows, vertical will yield columns.

pattern is an object that matches the given range or line(s). If the
match fails, the method raises a DoesntMatchException. If it
succeeds, it fills up the context given as a parameter.

Note that patterns can be passed as arguments to the upper level
pattern as object or classes. Classes will be instatianted.

There are 3 types of patterns:

1.2.2 Workbook

This pattern will be called to match a workbook:

1.2.3 Ranges

The following patterns match either the whole sheet or a range:

Layout is Rows or Columns, and will be used to know if the range
should be read horizontally or vertically.

6 Chapter 1. Contents:

sheetparser Documentation, Release 0.1a1

1.2.4 Iterators of lines

These patterns are called on an iterator of lines, and will be
passed as parameters to Range patterns or other patterns match-
ing iterators of lines.

These patterns can be combined with the operator +, which re-
turns a Sequence. a+b is equivalent to Sequence(a,b). Similarly,
a|b is equivalent to OrPattern(a,b).

The name of the pattern is used by the ResultContext to store the
matched element. The existing patterns that operate on an line
iterator are:

1.2.5 Stop tests

Stop tests are functions that are passed to FlexibleRange and Ta-
ble to detect the end of a block. You can create your own and
pass it as a parameter to the pattern.

1.3 Line and table transformations

The contents that is matched by the Line and Table patterns is
stored in the context result. Another level of processing is pro-
vided by list of transformations.

1.3.1 Line transformations

They are passed as line_args parameters to the Line pattern. It is
a list of function that take a list and return a list. These functions
are called in sequence, the result of one function is passed to the
following one.

The first function of the list must accept a list of Cell. The func-
tion get_value transforms it to the list of values.

These are the included line transformations:

Parameterized functions (objects with a method __call__):

1.3.2 Table transformations

Similarly, the lines matched by the Table pattern are passed to
a series of processings. They are subclasses of TableTransform
which implement wrap or process_line (or both). process_line is
called when a new line is added, and wrap is called at the end
when all lines have been added.

1.3. Line and table transformations 7

sheetparser Documentation, Release 0.1a1

1.4 Results

When a pattern is matched, it fills a ResultContext. The Result-
Context has to be instantiated by the client and passed to the
match method. Here are the provided classes that derive from
ResultContext:

1.5 Documents and backends

We load first a backend - that’s the module that will read the
Excel sheet and provide the information to the library. There are
5 provided backends:

• one based on xlrd, that can read xls file and xlsx without

formatting,

• one based on openpyxl that can read xlsx files with some

formatting information

• one is based on win32com and the actual Excel program, with
serious performance issues

• raw provides an interface for data stored as list, as well as csv
files

• pdfminer provides an interface for pdf files. This feature is ex-
perimental and is limited by the amount of information that pdf
files can provide.

8 Chapter 1. Contents:

https://pypi.python.org/pypi/xlrd
https://pypi.python.org/pypi/openpyxl
https://pypi.python.org/pypi/pdfminer.six

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

9

	Contents:
	Introduction to sheetparser
	Patterns
	Line and table transformations
	Results
	Documents and backends

	Indices and tables

